The EEE faculty is drawn from diverse backgrounds spanning academia, high-tech industry, government laboratories, and environmental consulting. Graduate students come not only from undergraduate engineering and applied science programs, but also from mathematics, economics, basic sciences, public policy, and the humanities. This breadth of experiences and backgrounds, along with exceptionally close student-faculty interaction (3:1 ratio for undergraduates, 4:1 ratio for graduates), offers a wide spectrum of knowledge to EEE students, both inside and outside the classroom.

APPLICATION REQUIREMENTS

- Official transcript from every post-secondary institution attended
- Three recommendation letters
- Official Graduate Record Examination (GRE) General Test Scores
- Personal statement
- Resume or curriculum vitae
- TOEFL, IELTS, or PTE Academic scores & English translation of official transcripts must be submitted by applicants whose undergraduate degree was received in a country in which English is not the official and spoken language.

APPLICATION DEADLINES

Fall Admission
M.S. February 15
Ph.D.................................... December 15

Spring Admission
All Programs October 1

FOR MORE INFORMATION, VISIT:
WWW.EEE.COLUMBIA.EDU
Water Resources and Climate Risks
Water Resources and Climate Risks focuses on the movement, availability, and quality of water throughout the Earth, on scales ranging from individual rivers and watersheds to the entire globe. Providing this valuable resource for society is the overarching goal, and the risks posed by climate variability, extremes, and change is an important and inherent part of all research projects. Specific projects range from the management of available supplies to forecasting future availability to underlying scientific mechanisms, and span a number of disciplines such as hydrology, hydroclimatology, water resources engineering, atmospheric dynamics, and land-atmosphere interaction.

Sustainable Energy
Sustainable Energy and Materials focuses on innovative ways to provide energy and material resources to society, in a sustainable and environmentally responsible manner. The central task is to build and shape the energy and industrial infrastructure of the 21st century. Many projects focus on treating the inefficiencies and by-products of traditional production in novel ways, such as carbon sequestration, zero-emission coal, catalysis, and recycling technologies. Other projects focus on developing viable alternative energy sources, such as waste-to-energy.

Integrated Waste Management
The M.S. concentration in Integrated Waste Management is aimed at professionals interested in industry, government or education careers in what has become the most costly sector of urban management. Past graduates have been engaged by engineering firms (e.g., Malcolm Pirnie, Hydroqual, Covanta Energy, etc.), government and NGOs in the U.S. and abroad (e.g., USACE, Federal Energy Regulatory Commission, Juniper Consultants, National Commission on Energy Policy, NYCED) or have continued with higher studies. Faculty and students in this concentration are closely associated with the Materials and Energy Recovery Division of ASME International.

Department of Earth and Environmental Engineering
918 S. W. Mudd Hall
500 West 120th Street
New York, NY 10027

QUESTIONS? 212-854 2905 or eee-coord@columbia.edu